organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-Dichloro-2,2'-[(1*E*,1'*E*)-propane-1,3diylbis(nitrilomethylidyne)]diphenol

Lei Shi, Zhu-Ping Xiao, Zhong Zhuang, Zhao-Zhao Zhong and Hai-Liang Zhu*

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: hailiang_zhu@163.com

Received 6 November 2007; accepted 10 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.066; wR factor = 0.161; data-to-parameter ratio = 15.8.

The title compound, $C_{17}H_{16}Cl_2N_2O_2$, forms two intramolecular $O-H\cdots N$ hydrogen bonds. The dihedral angle between the two benzene rings is 68.44 (11)°.

Related literature

For related literature, see: Allen *et al.* (1987); Li *et al.* (2006); Shi *et al.* (2007).

Crystal data

 $\begin{array}{l} C_{17}H_{16}Cl_2N_2O_2\\ M_r = 351.22\\ Monoclinic, P2_1/n\\ a = 11.2479 \ (18) \ \text{\AA}\\ b = 8.9729 \ (14) \ \text{\AA}\\ c = 17.007 \ (2) \ \text{\AA}\\ \beta = 96.06 \ (3)^\circ \end{array}$

$V = 1706.9 (5) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.39 \text{ mm}^{-1}$
T = 293 (2) K
$0.30 \times 0.30 \times 0.20$ mm

Data collection

Enraf–Nonius CAD-4	3462 measured reflections
diffractometer	3292 independent reflections
Absorption correction: ψ scan	1461 reflections with $I > 2\sigma(I)$
(North et al., 1968)	$R_{\rm int} = 0.047$
$T_{\min} = 0.892, \ T_{\max} = 0.926$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	208 parameters
$vR(F^2) = 0.161$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
292 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{O1}-\text{H1}A\cdots\text{N1}\\ \text{O2}-\text{H2}A\cdots\text{N2} \end{array}$	0.82	1.86	2.591 (5)	148
	0.82	1.81	2.548 (4)	149

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

We thank the Measurement Foundation of Nanjing University, and Drs Yue Han and Rui-Qin Fang for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2172).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1989). *CAD-4 Software*. Enraf-Nonius BV, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Li, Y.-G., Huang, K.-X. & Zhu, H.-L. (2006). *Acta Cryst.* E62, 02219–02220. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A24, 351–

359. Shaldish C M (1997-) SHELV697 and SHELV197 University of

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564. supplementary materials

Acta Cryst. (2007). E63, o4726 [doi:10.1107/81600536807057698]

4,4'-Dichloro-2,2'-[(1E,1'E)-propane-1,3-diylbis(nitrilomethylidyne)]diphenol

L. Shi, Z.-P. Xiao, Z. Zhuang, Z.-Z. Zhong and H.-L. Zhu

Comment

Schiff bases of salicylaldehyde and its derivatives play an important role in organic chemistry (Shi *et al.*, 2007). Recently, we have reported the structural characterization of one Schiff base compound derived from the condensation of 5-chloro-salicylaldehyde and primary amines (Li *et al.*, 2006). As an extension of this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). The dihedral angle between the two benzene rings is 68.44 (11)°. Intramolecular O—H···N hydrogen bonds are formed between atoms O1 and N1, O2 and N2.

Experimental

Propane-1,3-diamine (37 mg, 0.5 mmol) and 5-chlorosalicylaldehyde (156 mg, 1 mmol) were dissolved in methanol (10 ml) at 323 K. The mixture was stirred for 10 min to give a clear yellow solution. After keeping the solution in air for 7 d with slow evaporation of the solvent, yellow block crystals were formed at the bottom of the vessel, with 85% yield. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl₂.

Refinement

All H atoms were positioned geometrically (O—H = 0.82 Å, C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4,4'-Dichloro-2,2'-[(1E,1'E)-propane-1,3-diylbis(nitrilomethylidyne)]diphenol

Crystat aata
$C_{17}H_{16}Cl_2N_2O_2$
$M_r = 351.22$
Monoclinic, $P2_1/n$
<i>a</i> = 11.2479 (18) Å
<i>b</i> = 8.9729 (14) Å
c = 17.007 (2) Å
$\beta = 96.06 (3)^{\circ}$

Crosstal data

 $F_{000} = 728$ $D_x = 1.367 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 875 reflections $\theta = 2.6-25.5^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 293 (2) K

$V = 1706.9 (5) \text{ Å}^3$	Block, yellow
Z = 4	$0.30 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	3292 independent reflections
Radiation source: fine-focus sealed tube	1461 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 293(2) K	$\theta_{\rm max} = 26.0^{\circ}$
$\omega/2\theta$ scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$h = 0 \rightarrow 13$
$T_{\min} = 0.892, \ T_{\max} = 0.926$	$k = 0 \rightarrow 11$
3462 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3292 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1940 (4)	0.6503 (5)	0.0598 (2)	0.0630 (11)
C2	-0.1202 (3)	0.5367 (5)	0.0883 (2)	0.0568 (11)
H2C	-0.1535	0.4460	0.1008	0.068*

C3	0.0033 (3)	0.5538 (4)	0.0990 (2)	0.0486 (10)
C4	0.0526 (4)	0.6901 (5)	0.0777 (2)	0.0596 (11)
C5	-0.0239 (5)	0.8023 (5)	0.0499 (3)	0.0800 (14)
H5A	0.0083	0.8933	0.0368	0.096*
C6	-0.1452 (4)	0.7853 (6)	0.0409 (3)	0.0772 (14)
H6A	-0.1945	0.8638	0.0223	0.093*
C7	0.0794 (3)	0.4329 (5)	0.1287 (2)	0.0575 (11)
H7A	0.0437	0.3440	0.1417	0.069*
C8	0.2623 (3)	0.3116 (5)	0.1678 (3)	0.0747 (13)
H8A	0.2912	0.2592	0.1237	0.090*
H8B	0.2114	0.2440	0.1937	0.090*
C9	0.3670 (3)	0.3572 (5)	0.2256 (3)	0.0724 (13)
H9A	0.3378	0.4145	0.2680	0.087*
H9B	0.4054	0.2684	0.2487	0.087*
C10	0.4575 (3)	0.4479 (5)	0.1883 (2)	0.0719 (13)
H10A	0.4920	0.3882	0.1490	0.086*
H10B	0.4185	0.5333	0.1619	0.086*
C11	0.6566 (3)	0.4489 (5)	0.2474 (2)	0.0622 (11)
H11A	0.6722	0.3784	0.2097	0.075*
C12	0.7545 (3)	0.4979 (4)	0.3050 (2)	0.0525 (10)
C13	0.8677 (3)	0.4405 (5)	0.3036 (2)	0.0615 (11)
H13A	0.8822	0.3699	0.2657	0.074*
C14	0.9592 (3)	0.4867 (5)	0.3579 (2)	0.0598 (11)
C15	0.9377 (4)	0.5900 (5)	0.4151 (2)	0.0642 (12)
H15A	0.9999	0.6211	0.4519	0.077*
C16	0.8249 (4)	0.6468 (5)	0.4178 (2)	0.0665 (12)
H16A	0.8109	0.7161	0.4565	0.080*
C17	0.7320 (4)	0.6016 (4)	0.3635 (2)	0.0563 (11)
C11	-0.34717 (10)	0.62447 (17)	0.04676 (8)	0.0977 (5)
C12	1.10171 (10)	0.41310 (17)	0.35786 (8)	0.0959 (5)
N1	0.1924 (3)	0.4413 (4)	0.13828 (18)	0.0587 (9)
N2	0.5519 (3)	0.4989 (4)	0.24715 (19)	0.0655 (10)
01	0.1711 (3)	0.7112 (4)	0.08454 (17)	0.0866 (10)
H1A	0.2049	0.6353	0.1019	0.104*
O2	0.6225 (2)	0.6574 (3)	0.36736 (17)	0.0801 (9)
H2A	0.5762	0.6218	0.3318	0.120*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.070 (3)	0.066 (3)	0.053 (3)	0.006 (3)	0.007 (2)	0.000 (2)
C2	0.061 (3)	0.054 (3)	0.056 (3)	-0.004 (2)	0.009(2)	0.007 (2)
C3	0.060 (2)	0.046 (3)	0.040 (2)	-0.012 (2)	0.0050 (19)	-0.0043 (19)
C4	0.072 (3)	0.053 (3)	0.053 (3)	-0.015 (3)	0.001 (2)	0.002 (2)
C5	0.114 (4)	0.041 (3)	0.082 (3)	-0.008 (3)	0.000 (3)	0.014 (3)
C6	0.101 (4)	0.060 (3)	0.068 (3)	0.020 (3)	-0.005 (3)	-0.003 (3)
C7	0.059 (3)	0.049 (3)	0.065 (3)	-0.008 (2)	0.006 (2)	0.007 (2)
C8	0.062 (3)	0.068 (3)	0.091 (3)	0.003 (3)	-0.003 (2)	0.002 (3)

supplementary materials

C9	0.060 (3)	0.078 (3)	0.077 (3)	0.002 (2)	-0.001 (2)	0.011 (3)
C10	0.053 (2)	0.090 (4)	0.070 (3)	0.003 (3)	-0.005 (2)	-0.002 (3)
C11	0.059 (3)	0.065 (3)	0.063 (3)	0.005 (2)	0.007 (2)	-0.009 (2)
C12	0.055 (2)	0.051 (3)	0.051 (2)	0.003 (2)	0.006 (2)	-0.002 (2)
C13	0.055 (2)	0.071 (3)	0.058 (3)	0.008 (2)	0.005 (2)	-0.006 (2)
C14	0.048 (2)	0.072 (3)	0.059 (3)	0.006 (2)	0.004 (2)	0.009 (2)
C15	0.065 (3)	0.058 (3)	0.066 (3)	-0.006 (2)	-0.010 (2)	0.006 (2)
C16	0.079 (3)	0.046 (3)	0.073 (3)	0.004 (2)	-0.001 (3)	-0.009 (2)
C17	0.064 (3)	0.041 (2)	0.064 (3)	0.008 (2)	0.008 (2)	0.001 (2)
Cl1	0.0711 (8)	0.1190 (12)	0.1029 (10)	0.0248 (8)	0.0086 (7)	0.0233 (9)
Cl2	0.0544 (7)	0.1236 (12)	0.1081 (10)	0.0187 (7)	0.0010 (6)	-0.0046 (9)
N1	0.056 (2)	0.056 (2)	0.063 (2)	-0.0067 (19)	0.0038 (17)	0.0032 (18)
N2	0.0503 (19)	0.079 (3)	0.065 (2)	0.008 (2)	-0.0026 (17)	-0.004 (2)
01	0.079 (2)	0.075 (2)	0.104 (2)	-0.0294 (18)	-0.0005 (18)	0.0175 (19)
O2	0.0683 (19)	0.068 (2)	0.102 (2)	0.0257 (16)	-0.0010 (17)	-0.0266 (18)

Geometric parameters (Å, °)

C1—C2	1.371 (5)	С9—Н9В	0.970
C1—C6	1.381 (6)	C10—N2	1.454 (5)
C1—Cl1	1.729 (4)	C10—H10A	0.970
C2—C3	1.390 (5)	C10—H10B	0.970
C2—H2C	0.930	C11—N2	1.260 (4)
C3—C4	1.406 (5)	C11—C12	1.463 (5)
С3—С7	1.440 (5)	C11—H11A	0.930
C4—O1	1.339 (4)	C12—C13	1.375 (5)
C4—C5	1.375 (6)	C12—C17	1.405 (5)
C5—C6	1.366 (6)	C13—C14	1.372 (5)
С5—Н5А	0.930	C13—H13A	0.930
С6—Н6А	0.930	C14—C15	1.384 (5)
C7—N1	1.267 (4)	C14—Cl2	1.734 (4)
С7—Н7А	0.930	C15—C16	1.373 (5)
C8—N1	1.463 (5)	C15—H15A	0.930
C8—C9	1.509 (5)	C16—C17	1.381 (5)
C8—H8A	0.970	C16—H16A	0.930
C8—H8B	0.970	C17—O2	1.338 (4)
C9—C10	1.495 (5)	O1—H1A	0.820
С9—Н9А	0.970	O2—H2A	0.820
C2—C1—C6	119.6 (4)	H9A—C9—H9B	107.8
C2-C1-Cl1	120.2 (4)	N2-C10-C9	111.1 (3)
C6—C1—Cl1	120.2 (4)	N2-C10-H10A	109.4
C1—C2—C3	121.6 (4)	C9—C10—H10A	109.4
C1—C2—H2C	119.2	N2-C10-H10B	109.4
C3—C2—H2C	119.2	C9—C10—H10B	109.4
C2—C3—C4	118.5 (4)	H10A—C10—H10B	108.0
C2—C3—C7	120.8 (4)	N2-C11-C12	122.2 (4)
C4—C3—C7	120.7 (4)	N2-C11-H11A	118.9
O1—C4—C5	120.5 (4)	C12-C11-H11A	118.9
O1—C4—C3	121.1 (4)	C13—C12—C17	119.8 (4)

C5—C4—C3	118.4 (4)	C13—C12—C11	120.6 (4)
C6—C5—C4	122.6 (4)	C17—C12—C11	119.6 (4)
С6—С5—Н5А	118.7	C14—C13—C12	120.3 (4)
C4—C5—H5A	118.7	C14—C13—H13A	119.8
C5—C6—C1	119.2 (4)	C12—C13—H13A	119.8
С5—С6—Н6А	120.4	C13—C14—C15	120.1 (4)
С1—С6—Н6А	120.4	C13—C14—Cl2	120.8 (3)
N1—C7—C3	123.5 (4)	C15—C14—Cl2	119.0 (3)
N1—C7—H7A	118.3	C16—C15—C14	120.2 (4)
С3—С7—Н7А	118.3	C16—C15—H15A	119.9
N1—C8—C9	111.2 (4)	C14—C15—H15A	119.9
N1—C8—H8A	109.4	C15—C16—C17	120.4 (4)
С9—С8—Н8А	109.4	C15—C16—H16A	119.8
N1—C8—H8B	109.4	С17—С16—Н16А	119.8
С9—С8—Н8В	109.4	O2—C17—C16	119.6 (4)
H8A—C8—H8B	108.0	O2—C17—C12	121.3 (4)
С10—С9—С8	113.0 (4)	C16—C17—C12	119.2 (4)
С10—С9—Н9А	109.0	C7—N1—C8	119.5 (4)
С8—С9—Н9А	109.0	C11—N2—C10	120.3 (4)
С10—С9—Н9В	109.0	C4—O1—H1A	109.5
С8—С9—Н9В	109.0	C17—O2—H2A	109.5
C6—C1—C2—C3	0.1 (6)	N2-C11-C12-C17	1.5 (6)
Cl1—C1—C2—C3	179.6 (3)	C17—C12—C13—C14	-1.6 (6)
C1—C2—C3—C4	-1.8 (6)	C11-C12-C13-C14	-179.9 (4)
C1—C2—C3—C7	-179.8 (4)	C12-C13-C14-C15	0.9 (6)
C2—C3—C4—O1	-178.0 (3)	C12-C13-C14-Cl2	179.0 (3)
C7—C3—C4—O1	0.0 (6)	C13-C14-C15-C16	0.0 (6)
C2—C3—C4—C5	2.3 (6)	Cl2—C14—C15—C16	-178.1 (3)
C7—C3—C4—C5	-179.7 (4)	C14-C15-C16-C17	-0.1 (6)
O1—C4—C5—C6	179.1 (4)	C15—C16—C17—O2	179.6 (4)
C3—C4—C5—C6	-1.2 (7)	C15—C16—C17—C12	-0.6 (6)
C4—C5—C6—C1	-0.4 (7)	C13—C12—C17—O2	-178.7 (4)
C2—C1—C6—C5	1.0 (6)	C11—C12—C17—O2	-0.4 (6)
Cl1—C1—C6—C5	-178.5 (3)	C13—C12—C17—C16	1.4 (6)
C2—C3—C7—N1	178.7 (4)	C11—C12—C17—C16	179.8 (4)
C4—C3—C7—N1	0.7 (6)	C3—C7—N1—C8	-179.1 (3)
N1—C8—C9—C10	-65.5 (5)	C9—C8—N1—C7	-140.4 (4)
C8—C9—C10—N2	175.6 (4)	C12—C11—N2—C10	179.5 (4)
N2-C11-C12-C13	179.8 (4)	C9—C10—N2—C11	111.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O1—H1A…N1	0.82	1.86	2.591 (5)	148
O2—H2A…N2	0.82	1.81	2.548 (4)	149

